Abstract:Neural operators have emerged as a powerful paradigm for learning discretization-invariant function-to-function mappings in scientific computing. However, many practical systems are inherently stochastic, making principled uncertainty quantification essential for reliable deployment. To address this, we introduce a simple add-on, the diffusion last layer (DLL), a lightweight probabilistic head that can be attached to arbitrary neural operator backbones to model predictive uncertainty. Motivated by the relative smoothness and low-dimensional structure often exhibited by PDE solution distributions, DLL parameterizes the conditional output distribution directly in function space through a low-rank Karhunen-Loève expansion, enabling efficient and expressive uncertainty modeling. Across stochastic PDE operator learning benchmarks, DLL improves generalization and uncertainty-aware prediction. Moreover, even in deterministic long-horizon rollout settings, DLL enhances rollout stability and provides meaningful estimates of epistemic uncertainty for backbone neural operators.
Abstract:Machine learning interatomic potentials (MLIPs) have proven to be wildly useful for molecular dynamics simulations, powering countless drug and materials discovery applications. However, MLIPs face two primary bottlenecks preventing them from reaching realistic simulation scales: inference time and memory consumption. In this work, we address both issues by challenging the long-held belief that the cutoff radius for the MLIP must be held to a fixed, constant value. For the first time, we introduce a dynamic cutoff formulation that still leads to stable, long timescale molecular dynamics simulation. In introducing the dynamic cutoff, we are able to induce sparsity onto the underlying atom graph by targeting a specific number of neighbors per atom, significantly reducing both memory consumption and inference time. We show the effectiveness of a dynamic cutoff by implementing it onto 4 state of the art MLIPs: MACE, Nequip, Orbv3, and TensorNet, leading to 2.26x less memory consumption and 2.04x faster inference time, depending on the model and atomic system. We also perform an extensive error analysis and find that the dynamic cutoff models exhibit minimal accuracy dropoff compared to their fixed cutoff counterparts on both materials and molecular datasets. All model implementations and training code will be fully open sourced.
Abstract:On-demand Polymer discovery is essential for various industries, ranging from biomedical to reinforcement materials. Experiments with polymers have a long trial-and-error process, leading to long procedures and extensive resources. For these processes, machine learning has accelerated scientific discovery at the property prediction and latent space search fronts. However, laboratory researchers cannot readily access codes and these models to extract individual structures and properties due to infrastructure limitations. We present a closed-loop polymer structure-property predictor integrated in a terminal for early-stage polymer discovery. The framework is powered by LLM reasoning to provide users with property prediction, property-guided polymer structure generation, and structure modification capabilities. The SMILES sequences are guided by the synthetic accessibility score and the synthetic complexity score (SC Score) to ensure that polymer generation is as close as possible to synthetically accessible monomer-level structures. This framework addresses the challenge of generating novel polymer structures for laboratory researchers, thereby providing computational insights into polymer research.
Abstract:Data-driven flow-field reconstruction typically relies on autoencoder architectures that compress high-dimensional states into low-dimensional latent representations. However, classical approaches such as variational autoencoders (VAEs) often struggle to preserve the higher-order statistical structure of fluid flows when subjected to strong compression. We propose DiffCoder, a coupled framework that integrates a probabilistic diffusion model with a conventional convolutional ResNet encoder and trains both components end-to-end. The encoder compresses the flow field into a latent representation, while the diffusion model learns a generative prior over reconstructions conditioned on the compressed state. This design allows DiffCoder to recover distributional and spectral properties that are not strictly required for minimizing pointwise reconstruction loss but are critical for faithfully representing statistical properties of the flow field. We evaluate DiffCoder and VAE baselines across multiple model sizes and compression ratios on a challenging dataset of Kolmogorov flow fields. Under aggressive compression, DiffCoder significantly improves the spectral accuracy while VAEs exhibit substantial degradation. Although both methods show comparable relative L2 reconstruction error, DiffCoder better preserves the underlying distributional structure of the flow. At moderate compression levels, sufficiently large VAEs remain competitive, suggesting that diffusion-based priors provide the greatest benefit when information bottlenecks are severe. These results demonstrate that the generative decoding by diffusion offers a promising path toward compact, statistically consistent representations of complex flow fields.
Abstract:Designing mechanical linkages to achieve target end-effector trajectories presents a fundamental challenge due to the intricate coupling between continuous node placements, discrete topological configurations, and nonlinear kinematic constraints. The highly nonlinear motion-to-configuration relationship means small perturbations in joint positions drastically alter trajectories, while the combinatorially expanding design space renders conventional optimization and heuristic methods computationally intractable. We introduce an autoregressive diffusion framework that exploits the dyadic nature of linkage assembly by representing mechanisms as sequentially constructed graphs, where nodes correspond to joints and edges to rigid links. Our approach combines a causal transformer with a Denoising Diffusion Probabilistic Model (DDPM), both conditioned on target trajectories encoded via a transformer encoder. The causal transformer autoregressively predicts discrete topology node-by-node, while the DDPM refines each node's spatial coordinates and edge connectivity to previously generated nodes. This sequential generation enables adaptive trial-and-error synthesis where problematic nodes exhibiting kinematic locking or collisions can be selectively regenerated, allowing autonomous correction of degenerate configurations during design. Our graph-based, data-driven methodology surpasses traditional optimization approaches, enabling scalable inverse design that generalizes to mechanisms with arbitrary node counts. We demonstrate successful synthesis of linkage systems containing up to 20 nodes with extensibility to N-node architectures. This work advances autoregressive graph generation methodologies and computational kinematic synthesis, establishing new paradigms for scalable inverse design of complex mechanical systems.
Abstract:The ability to model mechanics of soft materials under flowing conditions is key in designing and engineering processes and materials with targeted properties. This generally requires solution of internal stress tensor, related to the deformation tensor through nonlinear and history-dependent constitutive models. Traditional numerical methods for non-Newtonian fluid dynamics often suffer from prohibitive computational demands and poor scalability to new problem instances. Developments in data-driven methods have mitigated some limitations but still require retraining across varied physical conditions. In this work, we introduce Rheological Operator Transformer (RheOFormer), a generative operator learning method leveraging self-attention to efficiently learn different spatial interactions and features of complex fluid flows. We benchmark RheOFormer across a range of different viscometric and non-viscometric flows with different types of viscoelastic and elastoviscoplastic mechanics in complex domains against ground truth solutions. Our results demonstrate that RheOFormer can accurately learn both scalar and tensorial nonlinear mechanics of different complex fluids and predict the spatio-temporal evolution of their flows, even when trained on limited datasets. Its strong generalization capabilities and computational efficiency establish RheOFormer as a robust neural surrogate for accelerating predictive complex fluid simulations, advancing data-driven experimentation, and enabling real-time process optimization across a wide range of applications.
Abstract:Pottery creation is a complicated art form that requires dexterous, precise and delicate actions to slowly morph a block of clay to a meaningful, and often useful 3D goal shape. In this work, we aim to create a robotic system that can create simple pottery goals with only pinch-based actions. This pinch pottery task allows us to explore the challenges of a highly multi-modal and long-horizon deformable manipulation task. To this end, we present PinchBot, a goal-conditioned diffusion policy model that when combined with pre-trained 3D point cloud embeddings, task progress prediction and collision-constrained action projection, is able to successfully create a variety of simple pottery goals. For experimental videos and access to the demonstration dataset, please visit our project website: https://sites.google.com/andrew.cmu.edu/pinchbot/home.
Abstract:Molecular dynamics simulations are an essential tool in understanding protein structure, dynamics, and function at the atomic level. However, preparing high quality input files for MD simulations can be a time consuming and error prone process. In this work, we introduce an automated pipeline that leverages Large Language Models (LLMs), specifically Gemini 2.0 Flash, in conjunction with python scripting and Selenium based web automation to streamline the generation of MD input files. The pipeline exploits CHARMM GUI's comprehensive web-based interface for preparing simulation-ready inputs for NAMD. By integrating Gemini's code generation and iterative refinement capabilities, simulation scripts are automatically written, executed, and revised to navigate CHARMM GUI, extract appropriate parameters, and produce the required NAMD input files. Post processing is performed using additional software to further refine the simulation outputs, thereby enabling a complete and largely hands free workflow. Our results demonstrate that this approach reduces setup time, minimizes manual errors, and offers a scalable solution for handling multiple protein systems in parallel. This automated framework paves the way for broader application of LLMs in computational structural biology, offering a robust and adaptable platform for future developments in simulation automation.
Abstract:Chemical process optimization is crucial to maximize production efficiency and economic performance. Traditional methods, including gradient-based solvers, evolutionary algorithms, and parameter grid searches, become impractical when operating constraints are ill-defined or unavailable, requiring engineers to rely on subjective heuristics to estimate feasible parameter ranges. To address this constraint definition bottleneck, we present a multi-agent framework of large language model (LLM) agents that autonomously infer operating constraints from minimal process descriptions, then collaboratively guide optimization using the inferred constraints. Our AutoGen-based agentic framework employs OpenAI's o3 model, with specialized agents for constraint generation, parameter validation, simulation execution, and optimization guidance. Through two phases - autonomous constraint generation using embedded domain knowledge, followed by iterative multi-agent optimization - the framework eliminates the need for predefined operational bounds. Validated on the hydrodealkylation process across cost, yield, and yield-to-cost ratio metrics, the framework demonstrated competitive performance with conventional optimization methods while achieving better computational efficiency, requiring fewer iterations to converge. Our approach converged in under 20 minutes, achieving a 31-fold speedup over grid search. Beyond computational efficiency, the framework's reasoning-guided search demonstrates sophisticated process understanding, correctly identifying utility trade-offs, and applying domain-informed heuristics. This approach shows significant potential for optimization scenarios where operational constraints are poorly characterized or unavailable, particularly for emerging processes and retrofit applications.
Abstract:Accurate prediction of blast pressure fields is essential for applications in structural safety, defense planning, and hazard mitigation. Traditional methods such as empirical models and computational fluid dynamics (CFD) simulations offer limited trade offs between speed and accuracy; empirical models fail to capture complex interactions in cluttered environments, while CFD simulations are computationally expensive and time consuming. In this work, we introduce BlastOFormer, a novel Transformer based surrogate model for full field maximum pressure prediction from arbitrary obstacle and charge configurations. BlastOFormer leverages a signed distance function (SDF) encoding and a grid to grid attention based architecture inspired by OFormer and Vision Transformer (ViT) frameworks. Trained on a dataset generated using the open source blastFoam CFD solver, our model outperforms convolutional neural networks (CNNs) and Fourier Neural Operators (FNOs) across both log transformed and unscaled domains. Quantitatively, BlastOFormer achieves the highest R2 score (0.9516) and lowest error metrics, while requiring only 6.4 milliseconds for inference, more than 600,000 times faster than CFD simulations. Qualitative visualizations and error analyses further confirm BlastOFormer's superior spatial coherence and generalization capabilities. These results highlight its potential as a real time alternative to conventional CFD approaches for blast pressure estimation in complex environments.